Artwork

Inhoud geleverd door Real Python. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Real Python of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

Using NumPy and Linear Algebra for Faster Python Code

1:08:37
 
Delen
 

Manage episode 356263204 series 2637014
Inhoud geleverd door Real Python. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Real Python of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

Are you still using loops and lists to process your data in Python? Have you heard of a Python library with optimized data structures and built-in operations that can speed up your data science code? This week on the show, Jodie Burchell, developer advocate for data science at JetBrains, returns to share secrets for harnessing linear algebra and NumPy for your projects.

Jodie details how most people begin their data science journey using loops to iterate over values and apply operations sequentially. We talk about how loops are friendly for beginners, being clear to read and easy to debug, but unfortunately don’t scale well, especially with large amounts of data.

Jodie shares some of the basics of linear algebra and how to organize data into vectors. We talk about how the NumPy library leverages those concepts to improve data processing. We discuss how the library includes operations for vector and matrix addition and subtraction, and why these operations are more efficient than loops. We also cover how NumPy stores arrays in memory and when working with them is faster vs when it’s not.

Course Spotlight: Data Cleaning With pandas and NumPy

In this video course, you’ll learn how to clean up messy data using pandas and NumPy. You’ll become equipped to deal with a range of problems, such as missing values, inconsistent formatting, malformed records, and nonsensical outliers.

Topics:

  • 00:00:00 – Introduction
  • 00:02:35 – Vectorize all the things! - PyCon UK 2022 Talk
  • 00:06:39 – Becoming familiar with linear algebra
  • 00:09:05 – Beginners start with loops
  • 00:11:25 – Starting with basic linear algebra
  • 00:12:25 – The basic unit of a vector
  • 00:18:06 – NumPy representing vectors in Python
  • 00:23:25 – Sponsor: InfluxDB
  • 00:24:13 – Block management
  • 00:25:54 – Replacing a loop with vector-based operations
  • 00:34:06 – NumPy broadcasting
  • 00:38:52 – Approximating nearest neighbors
  • 00:43:49 – Video Course Spotlight
  • 00:45:15 – Solving the problem
  • 00:46:44 – Getting rid of nested loops
  • 00:48:54 – A peek under the hood
  • 00:53:28 – How arrays vs lists are stored in memory
  • 01:00:24 – Considering a GPU
  • 01:03:37 – Real Python resources on the subject
  • 01:04:08 – Upcoming talks and conferences
  • 01:07:31 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

277 afleveringen

Artwork
iconDelen
 
Manage episode 356263204 series 2637014
Inhoud geleverd door Real Python. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Real Python of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

Are you still using loops and lists to process your data in Python? Have you heard of a Python library with optimized data structures and built-in operations that can speed up your data science code? This week on the show, Jodie Burchell, developer advocate for data science at JetBrains, returns to share secrets for harnessing linear algebra and NumPy for your projects.

Jodie details how most people begin their data science journey using loops to iterate over values and apply operations sequentially. We talk about how loops are friendly for beginners, being clear to read and easy to debug, but unfortunately don’t scale well, especially with large amounts of data.

Jodie shares some of the basics of linear algebra and how to organize data into vectors. We talk about how the NumPy library leverages those concepts to improve data processing. We discuss how the library includes operations for vector and matrix addition and subtraction, and why these operations are more efficient than loops. We also cover how NumPy stores arrays in memory and when working with them is faster vs when it’s not.

Course Spotlight: Data Cleaning With pandas and NumPy

In this video course, you’ll learn how to clean up messy data using pandas and NumPy. You’ll become equipped to deal with a range of problems, such as missing values, inconsistent formatting, malformed records, and nonsensical outliers.

Topics:

  • 00:00:00 – Introduction
  • 00:02:35 – Vectorize all the things! - PyCon UK 2022 Talk
  • 00:06:39 – Becoming familiar with linear algebra
  • 00:09:05 – Beginners start with loops
  • 00:11:25 – Starting with basic linear algebra
  • 00:12:25 – The basic unit of a vector
  • 00:18:06 – NumPy representing vectors in Python
  • 00:23:25 – Sponsor: InfluxDB
  • 00:24:13 – Block management
  • 00:25:54 – Replacing a loop with vector-based operations
  • 00:34:06 – NumPy broadcasting
  • 00:38:52 – Approximating nearest neighbors
  • 00:43:49 – Video Course Spotlight
  • 00:45:15 – Solving the problem
  • 00:46:44 – Getting rid of nested loops
  • 00:48:54 – A peek under the hood
  • 00:53:28 – How arrays vs lists are stored in memory
  • 01:00:24 – Considering a GPU
  • 01:03:37 – Real Python resources on the subject
  • 01:04:08 – Upcoming talks and conferences
  • 01:07:31 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

277 afleveringen

Alla avsnitt

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding

Luister naar deze show terwijl je op verkenning gaat
Spelen