Artwork

Inhoud geleverd door Thoughtworks. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Thoughtworks of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

Building at the intersection of machine learning and software engineering

48:30
 
Delen
 

Manage episode 415899533 series 2434934
Inhoud geleverd door Thoughtworks. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Thoughtworks of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

Bringing machine learning models into production is challenging. This is why, as demand for machine learning capabilities in products and services increases, new kinds of teams and new ways of working are emerging to bridge the gap between data science and software engineering. Effective Machine Learning Teams — written by Thoughtworkers David Tan, Ada Leung and Dave Colls — was created to help practitioners get to grips with these challenges and master everything needed to deliver exceptional machine learning-backed products.

In this episode of the Technology Podcast, the authors join Scott Shaw and Ken Mugrage to discuss their book. They explain how it addresses current issues in the field, taking in everything from the technical challenges of testing and deployment to the cultural work of building teams that span different disciplines and areas of expertise.

Learn more about Effective Machine Learning Teams: https://www.thoughtworks.com/insights/books/effective-machine-learning-teams

Read a Q&A with the authors: https://www.thoughtworks.com/insights/blog/machine-learning-and-ai/author-q-and-a-effective-machine-learning-teams

  continue reading

210 afleveringen

Artwork
iconDelen
 
Manage episode 415899533 series 2434934
Inhoud geleverd door Thoughtworks. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Thoughtworks of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

Bringing machine learning models into production is challenging. This is why, as demand for machine learning capabilities in products and services increases, new kinds of teams and new ways of working are emerging to bridge the gap between data science and software engineering. Effective Machine Learning Teams — written by Thoughtworkers David Tan, Ada Leung and Dave Colls — was created to help practitioners get to grips with these challenges and master everything needed to deliver exceptional machine learning-backed products.

In this episode of the Technology Podcast, the authors join Scott Shaw and Ken Mugrage to discuss their book. They explain how it addresses current issues in the field, taking in everything from the technical challenges of testing and deployment to the cultural work of building teams that span different disciplines and areas of expertise.

Learn more about Effective Machine Learning Teams: https://www.thoughtworks.com/insights/books/effective-machine-learning-teams

Read a Q&A with the authors: https://www.thoughtworks.com/insights/blog/machine-learning-and-ai/author-q-and-a-effective-machine-learning-teams

  continue reading

210 afleveringen

Alle afleveringen

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding

Luister naar deze show terwijl je op verkenning gaat
Spelen