Artwork

Inhoud geleverd door TWIML and Sam Charrington. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door TWIML and Sam Charrington of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

Building LLM-Based Applications with Azure OpenAI with Jay Emery - #657

43:23
 
Delen
 

Manage episode 386382494 series 2355587
Inhoud geleverd door TWIML and Sam Charrington. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door TWIML and Sam Charrington of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

Today we’re joined by Jay Emery, director of technical sales & architecture at Microsoft Azure. In our conversation with Jay, we discuss the challenges faced by organizations when building LLM-based applications, and we explore some of the techniques they are using to overcome them. We dive into the concerns around security, data privacy, cost management, and performance as well as the ability and effectiveness of prompting to achieve the desired results versus fine-tuning, and when each approach should be applied. We cover methods such as prompt tuning and prompt chaining, prompt variance, fine-tuning, and RAG to enhance LLM output along with ways to speed up inference performance such as choosing the right model, parallelization, and provisioned throughput units (PTUs). In addition to that, Jay also shared several intriguing use cases describing how businesses use tools like Azure Machine Learning prompt flow and Azure ML AI Studio to tailor LLMs to their unique needs and processes.

The complete show notes for this episode can be found at twimlai.com/go/657.

  continue reading

728 afleveringen

Artwork
iconDelen
 
Manage episode 386382494 series 2355587
Inhoud geleverd door TWIML and Sam Charrington. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door TWIML and Sam Charrington of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

Today we’re joined by Jay Emery, director of technical sales & architecture at Microsoft Azure. In our conversation with Jay, we discuss the challenges faced by organizations when building LLM-based applications, and we explore some of the techniques they are using to overcome them. We dive into the concerns around security, data privacy, cost management, and performance as well as the ability and effectiveness of prompting to achieve the desired results versus fine-tuning, and when each approach should be applied. We cover methods such as prompt tuning and prompt chaining, prompt variance, fine-tuning, and RAG to enhance LLM output along with ways to speed up inference performance such as choosing the right model, parallelization, and provisioned throughput units (PTUs). In addition to that, Jay also shared several intriguing use cases describing how businesses use tools like Azure Machine Learning prompt flow and Azure ML AI Studio to tailor LLMs to their unique needs and processes.

The complete show notes for this episode can be found at twimlai.com/go/657.

  continue reading

728 afleveringen

ทุกตอน

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding