Artwork

Inhoud geleverd door HackerNoon. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door HackerNoon of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

A Novel Framework for Analyzing Economic News Narratives Using GPT-3.5: Data

4:34
 
Delen
 

Manage episode 423443688 series 3474376
Inhoud geleverd door HackerNoon. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door HackerNoon of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

This story was originally published on HackerNoon at: https://hackernoon.com/a-novel-framework-for-analyzing-economic-news-narratives-using-gpt-35-data.
Analyzing economic news with GPT-3.5 and network analysis to detect evolving topics and narratives, and linking news structures to financial market volatility.
Check more stories related to finance at: https://hackernoon.com/c/finance. You can also check exclusive content about #financial-markets, #ai-in-finance, #economic-news-analysis, #hedging-strategies, #gpt-3.5-applications, #sentiment-analysis, #network-analysis, #financial-market-volatility, and more.
This story was written by: @hedging. Learn more about this writer by checking @hedging's about page, and for more stories, please visit hackernoon.com.
We download a tractable corpus of news from Factiva1 data provider by looking for news written in English. We consider approximately four years of daily news, i.e. from January 2020 to October 2023, and aggregate them at weekly level. After pre-processing them to a standard format, we achieve a dataset of 197 weeks with a total of 21, 590 news, with 110 data points per week.

  continue reading

143 afleveringen

Artwork
iconDelen
 
Manage episode 423443688 series 3474376
Inhoud geleverd door HackerNoon. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door HackerNoon of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

This story was originally published on HackerNoon at: https://hackernoon.com/a-novel-framework-for-analyzing-economic-news-narratives-using-gpt-35-data.
Analyzing economic news with GPT-3.5 and network analysis to detect evolving topics and narratives, and linking news structures to financial market volatility.
Check more stories related to finance at: https://hackernoon.com/c/finance. You can also check exclusive content about #financial-markets, #ai-in-finance, #economic-news-analysis, #hedging-strategies, #gpt-3.5-applications, #sentiment-analysis, #network-analysis, #financial-market-volatility, and more.
This story was written by: @hedging. Learn more about this writer by checking @hedging's about page, and for more stories, please visit hackernoon.com.
We download a tractable corpus of news from Factiva1 data provider by looking for news written in English. We consider approximately four years of daily news, i.e. from January 2020 to October 2023, and aggregate them at weekly level. After pre-processing them to a standard format, we achieve a dataset of 197 weeks with a total of 21, 590 news, with 110 data points per week.

  continue reading

143 afleveringen

Alle afleveringen

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding

Luister naar deze show terwijl je op verkenning gaat
Spelen