Artwork

Inhoud geleverd door SmartLogic LLC. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door SmartLogic LLC of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

Machine Learning in Elixir vs. Python, SQL, and Matlab with Katelynn Burns & Alexis Carpenter

31:19
 
Delen
 

Manage episode 385342062 series 2493466
Inhoud geleverd door SmartLogic LLC. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door SmartLogic LLC of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

In this episode of Elixir Wizards, Katelynn Burns, software engineer at LaunchScout, and Alexis Carpenter, senior data scientist at cars.com, join Host Dan Ivovich to discuss machine learning with Elixir, Python, SQL, and MATLAB. They compare notes on available tools, preprocessing, working with pre-trained models, and training models for specific jobs.

The discussion inspires collaboration and learning across communities while revealing the foundational aspects of ML, such as understanding data and asking the right questions to solve problems effectively.

Topics discussed:

  • Using pre-trained models in Bumblebee for Elixir projects
  • Training models using Python and SQL
  • The importance of data preprocessing before building models
  • Popular tools used for machine learning in different languages
  • Getting started with ML by picking a personal project topic of interest
  • Resources for ML aspirants, such as online courses, tutorials, and books
  • The potential for Elixir to train more customized models in the future
  • Similarities between ML approaches in different languages
  • Collaboration opportunities across programming communities
  • Choosing the right ML approach for the problem you're trying to solve
  • Productionalizing models like fine-tuned LLM's
  • The need for hands-on practice for learning ML skills
  • Continued maturation of tools like Bumblebee in Elixir
  • Katelynn's upcoming CodeBeam talk on advanced motion tracking

Links mentioned in this episode

https://launchscout.com/
https://www.cars.com/
Genetic Algorithms in Elixir by Sean Moriarity
Machine Learning in Elixir by Sean Moriarity
https://github.com/elixir-nx/bumblebee
https://github.com/huggingface
https://www.docker.com/products/docker-hub/
Programming with MATLAB
https://elixirforum.com/
https://pypi.org/project/pyspark/
Machine Learning Course from Stanford School of Engineering
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien Géron
Data Science for Business by Foster Provost & Tom Fawcett
https://medium.com/@carscomtech
https://github.com/k-burns
Code Beam America March, 2024

Special Guests: Alexis Carpenter and Katelynn Burns.

  continue reading

181 afleveringen

Artwork
iconDelen
 
Manage episode 385342062 series 2493466
Inhoud geleverd door SmartLogic LLC. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door SmartLogic LLC of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

In this episode of Elixir Wizards, Katelynn Burns, software engineer at LaunchScout, and Alexis Carpenter, senior data scientist at cars.com, join Host Dan Ivovich to discuss machine learning with Elixir, Python, SQL, and MATLAB. They compare notes on available tools, preprocessing, working with pre-trained models, and training models for specific jobs.

The discussion inspires collaboration and learning across communities while revealing the foundational aspects of ML, such as understanding data and asking the right questions to solve problems effectively.

Topics discussed:

  • Using pre-trained models in Bumblebee for Elixir projects
  • Training models using Python and SQL
  • The importance of data preprocessing before building models
  • Popular tools used for machine learning in different languages
  • Getting started with ML by picking a personal project topic of interest
  • Resources for ML aspirants, such as online courses, tutorials, and books
  • The potential for Elixir to train more customized models in the future
  • Similarities between ML approaches in different languages
  • Collaboration opportunities across programming communities
  • Choosing the right ML approach for the problem you're trying to solve
  • Productionalizing models like fine-tuned LLM's
  • The need for hands-on practice for learning ML skills
  • Continued maturation of tools like Bumblebee in Elixir
  • Katelynn's upcoming CodeBeam talk on advanced motion tracking

Links mentioned in this episode

https://launchscout.com/
https://www.cars.com/
Genetic Algorithms in Elixir by Sean Moriarity
Machine Learning in Elixir by Sean Moriarity
https://github.com/elixir-nx/bumblebee
https://github.com/huggingface
https://www.docker.com/products/docker-hub/
Programming with MATLAB
https://elixirforum.com/
https://pypi.org/project/pyspark/
Machine Learning Course from Stanford School of Engineering
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien Géron
Data Science for Business by Foster Provost & Tom Fawcett
https://medium.com/@carscomtech
https://github.com/k-burns
Code Beam America March, 2024

Special Guests: Alexis Carpenter and Katelynn Burns.

  continue reading

181 afleveringen

Όλα τα επεισόδια

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding