Artwork

Inhoud geleverd door Kyle Polich. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Kyle Polich of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

Fraud Detection with Graphs

37:23
 
Delen
 

Manage episode 462374842 series 2328414
Inhoud geleverd door Kyle Polich. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Kyle Polich of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

In this episode, Šimon Mandlík, a PhD candidate at the Czech Technical University will talk with us about leveraging machine learning and graph-based techniques for cybersecurity applications.

We'll learn how graphs are used to detect malicious activity in networks, such as identifying harmful domains and executable files by analyzing their relationships within vast datasets.

This will include the use of hierarchical multi-instance learning (HML) to represent JSON-based network activity as graphs and the advantages of analyzing connections between entities (like clients, domains etc.).

Our guest shows that while other graph methods (such as GNN or Label Propagation) lack in scalability or having trouble with heterogeneous graphs, his method can tackle them because of the "locality assumption" – fraud will be a local phenomenon in the graph – and by relying on this assumption, we can get faster and more accurate results.

-------------------------------

Want to listen ad-free? Try our Graphs Course? Join Data Skeptic+ for $5 / month of $50 / year

https://plus.dataskeptic.com

  continue reading

569 afleveringen

Artwork

Fraud Detection with Graphs

Data Skeptic

794 subscribers

published

iconDelen
 
Manage episode 462374842 series 2328414
Inhoud geleverd door Kyle Polich. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Kyle Polich of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

In this episode, Šimon Mandlík, a PhD candidate at the Czech Technical University will talk with us about leveraging machine learning and graph-based techniques for cybersecurity applications.

We'll learn how graphs are used to detect malicious activity in networks, such as identifying harmful domains and executable files by analyzing their relationships within vast datasets.

This will include the use of hierarchical multi-instance learning (HML) to represent JSON-based network activity as graphs and the advantages of analyzing connections between entities (like clients, domains etc.).

Our guest shows that while other graph methods (such as GNN or Label Propagation) lack in scalability or having trouble with heterogeneous graphs, his method can tackle them because of the "locality assumption" – fraud will be a local phenomenon in the graph – and by relying on this assumption, we can get faster and more accurate results.

-------------------------------

Want to listen ad-free? Try our Graphs Course? Join Data Skeptic+ for $5 / month of $50 / year

https://plus.dataskeptic.com

  continue reading

569 afleveringen

Alle afleveringen

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding

Luister naar deze show terwijl je op verkenning gaat
Spelen