Artwork

Inhoud geleverd door The Radcliffe Cardiology Podcast. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door The Radcliffe Cardiology Podcast of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

Implementing AI Algorithms in Emergency Departments: RAPIDxAI with Dr Derek Chew

18:02
 
Delen
 

Manage episode 442788143 series 2990303
Inhoud geleverd door The Radcliffe Cardiology Podcast. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door The Radcliffe Cardiology Podcast of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Host, Dr Dipti Itchhaporia (Hoag Heart and Vascular Institute, Newport Beach, CA, US) is joined by PI, Dr Derek Chew (Monash Heart and Victorian Heart Institute, AU) to discuss the findings from the RAPIDxAI trial, which aims to improve the assessment of suspected cardiac chest pain in emergency departments (ED) using a machine-learning algorithm that will interpret high-sensitivity troponin test results, assisting the diagnosis of myocardial infarction (MI) and other myocardial injuries. Conducted across 12 hospitals with 9600 patients, RAPIDxAI compares AI-supported decision-making to standard of care. Investigators found that the availability of AI-based decision making tools guiding diagnostic and prognostic evaluation of high-sensitivity troponin T did not impact clinical care to improve cardiovascular outcomes. There was no increased risk using the algorithms observed in the trial, demonstrating the safety of the algorithm. Dr Itchhaporia and Dr Chew discuss the trust levels of cardiologists in implementing AI algorithms into clinical practice, and cost-effective methods of validating AI, as well as the lessons learnt from the trial. If you have any questions or suggestions for topics to cover on the Radcliffe Podcast, please email managingeditor@ecrjournal.com.
  continue reading

43 afleveringen

Artwork
iconDelen
 
Manage episode 442788143 series 2990303
Inhoud geleverd door The Radcliffe Cardiology Podcast. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door The Radcliffe Cardiology Podcast of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Host, Dr Dipti Itchhaporia (Hoag Heart and Vascular Institute, Newport Beach, CA, US) is joined by PI, Dr Derek Chew (Monash Heart and Victorian Heart Institute, AU) to discuss the findings from the RAPIDxAI trial, which aims to improve the assessment of suspected cardiac chest pain in emergency departments (ED) using a machine-learning algorithm that will interpret high-sensitivity troponin test results, assisting the diagnosis of myocardial infarction (MI) and other myocardial injuries. Conducted across 12 hospitals with 9600 patients, RAPIDxAI compares AI-supported decision-making to standard of care. Investigators found that the availability of AI-based decision making tools guiding diagnostic and prognostic evaluation of high-sensitivity troponin T did not impact clinical care to improve cardiovascular outcomes. There was no increased risk using the algorithms observed in the trial, demonstrating the safety of the algorithm. Dr Itchhaporia and Dr Chew discuss the trust levels of cardiologists in implementing AI algorithms into clinical practice, and cost-effective methods of validating AI, as well as the lessons learnt from the trial. If you have any questions or suggestions for topics to cover on the Radcliffe Podcast, please email managingeditor@ecrjournal.com.
  continue reading

43 afleveringen

Alle afleveringen

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding