Artwork

Inhoud geleverd door MapScaping. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door MapScaping of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

Computer Vision and GeoAI

37:58
 
Delen
 

Manage episode 361736945 series 2502116
Inhoud geleverd door MapScaping. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door MapScaping of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

Computer vision is a field of artificial intelligence (AI) that enables computers and systems to derive meaningful information from digital images.

You might think that this is exactly what we are doing in earth observation but there are a few important differences between computer vision and what some people refer to as GeoAI.

This week Jordi inglada is going to help you understand what those differences are and why it's not always possible to use Computer vision techniques in the field of Remote Sensing.

Listen out for these key points during the conversation!

  • Why plausible or realistic data is not always a substitute for actual measurements, except when it is ;)
  • In computer vision we can learn from the data, in earth observation we know the physics
  • To do interesting work in data science you need to - Computer science, applied math, and domain expertise. You don’t need to be an expert in all three but you need to be interested in all three
  • Vectors in the machine learning world don’t necessarily have anything to do with points lines and polygons ;)

Sponsored by Sinergise, as part of Copernicus Data Space Ecosystem knowledge sharing. dataspace.copernicus.eu/ http://dataspace.copernicus.eu/

Related Podcast Episodes

Super Resolution

https://mapscaping.com/podcast/super-resolution-smarter-upsampling/

Fake Satellite Imagery

https://mapscaping.com/podcast/fake-satellite-imagery/

Sentinal Hub

https://mapscaping.com/podcast/sentinel-hub/

Google Earth Engine

https://mapscaping.com/podcast/introducing-google-earth-engine/

Microsofts Planetary Computer

https://mapscaping.com/podcast/the-planetary-computer/

BTW MapScaping has started a Job Board!

it's in the early stages but it's live

Jobs - Mapscaping.com

Some more episodes you might enjoy

ESRI, GIS careers, Geospatial Data Science

QGIS, Geospatial Python, ArcGIS Pro

Google Maps, Geomatics, Cartography

Location Intelligence, Mapping

  continue reading

240 afleveringen

Artwork
iconDelen
 
Manage episode 361736945 series 2502116
Inhoud geleverd door MapScaping. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door MapScaping of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

Computer vision is a field of artificial intelligence (AI) that enables computers and systems to derive meaningful information from digital images.

You might think that this is exactly what we are doing in earth observation but there are a few important differences between computer vision and what some people refer to as GeoAI.

This week Jordi inglada is going to help you understand what those differences are and why it's not always possible to use Computer vision techniques in the field of Remote Sensing.

Listen out for these key points during the conversation!

  • Why plausible or realistic data is not always a substitute for actual measurements, except when it is ;)
  • In computer vision we can learn from the data, in earth observation we know the physics
  • To do interesting work in data science you need to - Computer science, applied math, and domain expertise. You don’t need to be an expert in all three but you need to be interested in all three
  • Vectors in the machine learning world don’t necessarily have anything to do with points lines and polygons ;)

Sponsored by Sinergise, as part of Copernicus Data Space Ecosystem knowledge sharing. dataspace.copernicus.eu/ http://dataspace.copernicus.eu/

Related Podcast Episodes

Super Resolution

https://mapscaping.com/podcast/super-resolution-smarter-upsampling/

Fake Satellite Imagery

https://mapscaping.com/podcast/fake-satellite-imagery/

Sentinal Hub

https://mapscaping.com/podcast/sentinel-hub/

Google Earth Engine

https://mapscaping.com/podcast/introducing-google-earth-engine/

Microsofts Planetary Computer

https://mapscaping.com/podcast/the-planetary-computer/

BTW MapScaping has started a Job Board!

it's in the early stages but it's live

Jobs - Mapscaping.com

Some more episodes you might enjoy

ESRI, GIS careers, Geospatial Data Science

QGIS, Geospatial Python, ArcGIS Pro

Google Maps, Geomatics, Cartography

Location Intelligence, Mapping

  continue reading

240 afleveringen

Alle afleveringen

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding

Luister naar deze show terwijl je op verkenning gaat
Spelen