Artwork

Inhoud geleverd door Michael Kennedy. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Michael Kennedy of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

#516: Accelerating Python Data Science at NVIDIA

1:05:42
 
Delen
 

Manage episode 501272622 series 1422209
Inhoud geleverd door Michael Kennedy. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Michael Kennedy of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Python’s data stack is getting a serious GPU turbo boost. In this episode, Ben Zaitlen from NVIDIA joins us to unpack RAPIDS, the open source toolkit that lets pandas, scikit-learn, Spark, Polars, and even NetworkX execute on GPUs. We trace the project’s origin and why NVIDIA built it in the open, then dig into the pieces that matter in practice: cuDF for DataFrames, cuML for ML, cuGraph for graphs, cuXfilter for dashboards, and friends like cuSpatial and cuSignal. We talk real speedups, how the pandas accelerator works without a rewrite, and what becomes possible when jobs that used to take hours finish in minutes. You’ll hear strategies for datasets bigger than GPU memory, scaling out with Dask or Ray, Spark acceleration, and the growing role of vector search with cuVS for AI workloads. If you know the CPU tools, this is your on-ramp to the same APIs at GPU speed.
Episode sponsors
Posit
Talk Python Courses

Links from the show

RAPIDS: github.com/rapidsai
Example notebooks showing drop-in accelerators: github.com
Benjamin Zaitlen - LinkedIn: linkedin.com
RAPIDS Deployment Guide (Stable): docs.rapids.ai
RAPIDS cuDF API Docs (Stable): docs.rapids.ai
Asianometry YouTube Video: youtube.com
cuDF pandas Accelerator (Stable): docs.rapids.ai
Watch this episode on YouTube: youtube.com
Episode #516 deep-dive: talkpython.fm/516
Episode transcripts: talkpython.fm
Theme Song: Developer Rap
🥁 Served in a Flask 🎸: talkpython.fm/flasksong
---== Don't be a stranger ==---
YouTube: youtube.com/@talkpython
Bluesky: @talkpython.fm
Mastodon: @[email protected]
X.com: @talkpython
Michael on Bluesky: @mkennedy.codes
Michael on Mastodon: @[email protected]
Michael on X.com: @mkennedy
  continue reading

725 afleveringen

Artwork
iconDelen
 
Manage episode 501272622 series 1422209
Inhoud geleverd door Michael Kennedy. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Michael Kennedy of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Python’s data stack is getting a serious GPU turbo boost. In this episode, Ben Zaitlen from NVIDIA joins us to unpack RAPIDS, the open source toolkit that lets pandas, scikit-learn, Spark, Polars, and even NetworkX execute on GPUs. We trace the project’s origin and why NVIDIA built it in the open, then dig into the pieces that matter in practice: cuDF for DataFrames, cuML for ML, cuGraph for graphs, cuXfilter for dashboards, and friends like cuSpatial and cuSignal. We talk real speedups, how the pandas accelerator works without a rewrite, and what becomes possible when jobs that used to take hours finish in minutes. You’ll hear strategies for datasets bigger than GPU memory, scaling out with Dask or Ray, Spark acceleration, and the growing role of vector search with cuVS for AI workloads. If you know the CPU tools, this is your on-ramp to the same APIs at GPU speed.
Episode sponsors
Posit
Talk Python Courses

Links from the show

RAPIDS: github.com/rapidsai
Example notebooks showing drop-in accelerators: github.com
Benjamin Zaitlen - LinkedIn: linkedin.com
RAPIDS Deployment Guide (Stable): docs.rapids.ai
RAPIDS cuDF API Docs (Stable): docs.rapids.ai
Asianometry YouTube Video: youtube.com
cuDF pandas Accelerator (Stable): docs.rapids.ai
Watch this episode on YouTube: youtube.com
Episode #516 deep-dive: talkpython.fm/516
Episode transcripts: talkpython.fm
Theme Song: Developer Rap
🥁 Served in a Flask 🎸: talkpython.fm/flasksong
---== Don't be a stranger ==---
YouTube: youtube.com/@talkpython
Bluesky: @talkpython.fm
Mastodon: @[email protected]
X.com: @talkpython
Michael on Bluesky: @mkennedy.codes
Michael on Mastodon: @[email protected]
Michael on X.com: @mkennedy
  continue reading

725 afleveringen

Alle afleveringen

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding

Luister naar deze show terwijl je op verkenning gaat
Spelen