Artwork

Inhoud geleverd door Marcel Kurovski. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Marcel Kurovski of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

#23: Generative Models for Recommender Systems with Yashar Deldjoo

1:54:58
 
Delen
 

Manage episode 434567869 series 3288795
Inhoud geleverd door Marcel Kurovski. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Marcel Kurovski of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

In episode 23 of Recsperts, we welcome Yashar Deldjoo, Assistant Professor at the Polytechnic University of Bari, Italy. Yashar's research on recommender systems includes multimodal approaches, multimedia recommender systems as well as trustworthiness and adversarial robustness, where he has published a lot of work. We discuss the evolution of generative models for recommender systems, modeling paradigms, scenarios as well as their evaluation, risks and harms.

We begin our interview with a reflection of Yashar's areas of recommender systems research so far. Starting with multimedia recsys, particularly video recommendations, Yashar covers his work around adversarial robustness and trustworthiness leading to the main topic for this episode: generative models for recommender systems. We learn about their aspects for improving beyond the (partially saturated) state of traditional recommender systems: improve effectiveness and efficiency for top-n recommendations, introduce interactivity beyond classical conversational recsys, provide personalized zero- or few-shot recommendations.
We learn about the modeling paradigms and as well about the scenarios for generative models which mainly differ by input and modelling approach: ID-based, text-based, and multimodal generative models. This is how we navigate the large field of acronyms leading us from VAEs and GANs to LLMs.

Towards the end of the episode, we also touch on the evaluation, opportunities, risks and harms of generative models for recommender systems. Yashar also provides us with an ample amount of references and upcoming events where people get the chance to know more about GenRecSys.

Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
Don't forget to follow the podcast and please leave a review

  • (00:00) - Introduction
  • (03:58) - About Yashar Deldjoo
  • (09:34) - Motivation for RecSys
  • (13:05) - Intro to Generative Models for Recommender Systems
  • (44:27) - Modeling Paradigms for Generative Models
  • (51:33) - Scenario 1: Interaction-Driven Recommendation
  • (57:59) - Scenario 2: Text-based Recommendation
  • (01:10:39) - Scenario 3: Multimodal Recommendation
  • (01:24:59) - Evaluation of Impact and Harm
  • (01:38:07) - Further Research Challenges
  • (01:45:03) - References and Research Advice
  • (01:49:39) - Closing Remarks

Links from the Episode:

Papers:

General Links:

  continue reading

26 afleveringen

Artwork
iconDelen
 
Manage episode 434567869 series 3288795
Inhoud geleverd door Marcel Kurovski. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Marcel Kurovski of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

In episode 23 of Recsperts, we welcome Yashar Deldjoo, Assistant Professor at the Polytechnic University of Bari, Italy. Yashar's research on recommender systems includes multimodal approaches, multimedia recommender systems as well as trustworthiness and adversarial robustness, where he has published a lot of work. We discuss the evolution of generative models for recommender systems, modeling paradigms, scenarios as well as their evaluation, risks and harms.

We begin our interview with a reflection of Yashar's areas of recommender systems research so far. Starting with multimedia recsys, particularly video recommendations, Yashar covers his work around adversarial robustness and trustworthiness leading to the main topic for this episode: generative models for recommender systems. We learn about their aspects for improving beyond the (partially saturated) state of traditional recommender systems: improve effectiveness and efficiency for top-n recommendations, introduce interactivity beyond classical conversational recsys, provide personalized zero- or few-shot recommendations.
We learn about the modeling paradigms and as well about the scenarios for generative models which mainly differ by input and modelling approach: ID-based, text-based, and multimodal generative models. This is how we navigate the large field of acronyms leading us from VAEs and GANs to LLMs.

Towards the end of the episode, we also touch on the evaluation, opportunities, risks and harms of generative models for recommender systems. Yashar also provides us with an ample amount of references and upcoming events where people get the chance to know more about GenRecSys.

Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
Don't forget to follow the podcast and please leave a review

  • (00:00) - Introduction
  • (03:58) - About Yashar Deldjoo
  • (09:34) - Motivation for RecSys
  • (13:05) - Intro to Generative Models for Recommender Systems
  • (44:27) - Modeling Paradigms for Generative Models
  • (51:33) - Scenario 1: Interaction-Driven Recommendation
  • (57:59) - Scenario 2: Text-based Recommendation
  • (01:10:39) - Scenario 3: Multimodal Recommendation
  • (01:24:59) - Evaluation of Impact and Harm
  • (01:38:07) - Further Research Challenges
  • (01:45:03) - References and Research Advice
  • (01:49:39) - Closing Remarks

Links from the Episode:

Papers:

General Links:

  continue reading

26 afleveringen

Όλα τα επεισόδια

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding