Artwork

Inhoud geleverd door Marcel Kurovski. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Marcel Kurovski of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

#19: Popularity Bias in Recommender Systems with Himan Abdollahpouri

1:41:37
 
Delen
 

Manage episode 379566213 series 3288795
Inhoud geleverd door Marcel Kurovski. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Marcel Kurovski of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

In episode 19 of Recsperts, we welcome Himan Abdollahpouri who is an Applied Research Scientist for Personalization & Machine Learning at Spotify. We discuss the role of popularity bias in recommender systems which was the dissertation topic of Himan. We talk about multi-objective and multi-stakeholder recommender systems as well as the challenges of music and podcast streaming personalization at Spotify.

In our interview, Himan walks us through popularity bias as the main cause of unfair recommendations for multiple stakeholders. We discuss the consumer- and provider-side implications and how to evaluate popularity bias. Not the sheer existence of popularity bias is the major problem, but its propagation in various collaborative filtering algorithms. But we also learn how to counteract by debiasing the data, the model itself, or it's output. We also hear more about the relationship between multi-objective and multi-stakeholder recommender systems.

At the end of the episode, Himan also shares the influence of popularity bias in music and podcast streaming at Spotify as well as how calibration helps to better cater content to users' preferences.

Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
Don't forget to follow the podcast and please leave a review

  • (00:00) - Introduction
  • (04:43) - About Himan Abdollahpouri
  • (15:23) - What is Popularity Bias and why is it important?
  • (25:05) - Effect of Popularity Bias in Collaborative Filtering
  • (30:30) - Individual Sensitivity towards Popularity
  • (36:25) - Introduction to Bias Mitigation
  • (53:16) - Content for Bias Mitigation
  • (56:53) - Evaluating Popularity Bias
  • (01:05:01) - Popularity Bias in Music and Podcast Streaming
  • (01:08:04) - Multi-Objective Recommender Systems
  • (01:16:13) - Multi-Stakeholder Recommender Systems
  • (01:18:38) - Recommendation Challenges at Spotify
  • (01:35:16) - Closing Remarks

Links from the Episode:

Papers:

General Links:

  continue reading

26 afleveringen

Artwork
iconDelen
 
Manage episode 379566213 series 3288795
Inhoud geleverd door Marcel Kurovski. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Marcel Kurovski of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

In episode 19 of Recsperts, we welcome Himan Abdollahpouri who is an Applied Research Scientist for Personalization & Machine Learning at Spotify. We discuss the role of popularity bias in recommender systems which was the dissertation topic of Himan. We talk about multi-objective and multi-stakeholder recommender systems as well as the challenges of music and podcast streaming personalization at Spotify.

In our interview, Himan walks us through popularity bias as the main cause of unfair recommendations for multiple stakeholders. We discuss the consumer- and provider-side implications and how to evaluate popularity bias. Not the sheer existence of popularity bias is the major problem, but its propagation in various collaborative filtering algorithms. But we also learn how to counteract by debiasing the data, the model itself, or it's output. We also hear more about the relationship between multi-objective and multi-stakeholder recommender systems.

At the end of the episode, Himan also shares the influence of popularity bias in music and podcast streaming at Spotify as well as how calibration helps to better cater content to users' preferences.

Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
Don't forget to follow the podcast and please leave a review

  • (00:00) - Introduction
  • (04:43) - About Himan Abdollahpouri
  • (15:23) - What is Popularity Bias and why is it important?
  • (25:05) - Effect of Popularity Bias in Collaborative Filtering
  • (30:30) - Individual Sensitivity towards Popularity
  • (36:25) - Introduction to Bias Mitigation
  • (53:16) - Content for Bias Mitigation
  • (56:53) - Evaluating Popularity Bias
  • (01:05:01) - Popularity Bias in Music and Podcast Streaming
  • (01:08:04) - Multi-Objective Recommender Systems
  • (01:16:13) - Multi-Stakeholder Recommender Systems
  • (01:18:38) - Recommendation Challenges at Spotify
  • (01:35:16) - Closing Remarks

Links from the Episode:

Papers:

General Links:

  continue reading

26 afleveringen

Alle afleveringen

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding