Artwork

Inhoud geleverd door PyTorch, Edward Yang, and Team PyTorch. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door PyTorch, Edward Yang, and Team PyTorch of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

Anatomy of a domain library

16:11
 
Delen
 

Manage episode 295783831 series 2921809
Inhoud geleverd door PyTorch, Edward Yang, and Team PyTorch. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door PyTorch, Edward Yang, and Team PyTorch of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

What's a domain library? Why do they exist? What do they do for you? What should you know about developing in PyTorch main library versus in a domain library? How coupled are they with PyTorch as a whole? What's cool about working on domain libraries?

Further reading.

Line notes.

  • why do domain libraries exist? lots of domains specific gadgets,
    inappropriate for PyTorch
  • what does a domain library do
    • operator implementations (old days: pure python, not anymore)
      • with autograd support and cuda acceleration
      • esp encoding/decoding, e.g., for domain file formats
        • torchbind for custom objects
        • takes care of getting the dependencies for you
      • esp transformations, e.g., for data augmentation
    • models, esp pretrained weights
    • datasets
    • reference scripts
    • full wheel/conda packaging like pytorch
    • mobile compatibility
  • separate repos: external contributors with direct access
    • manual sync to fbcode; a lot easier to land code! less
      motion so lower risk
  • coupling with pytorch? CI typically runs on nightlies
    • pytorch itself tests against torchvision, canary against
      extensibility mechanisms
    • mostly not using internal tools (e.g., TensorIterator),
      too unstable (this would be good to fix)
  • closer to research side of pytorch; francesco also part of papers
  continue reading

83 afleveringen

Artwork

Anatomy of a domain library

PyTorch Developer Podcast

32 subscribers

published

iconDelen
 
Manage episode 295783831 series 2921809
Inhoud geleverd door PyTorch, Edward Yang, and Team PyTorch. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door PyTorch, Edward Yang, and Team PyTorch of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

What's a domain library? Why do they exist? What do they do for you? What should you know about developing in PyTorch main library versus in a domain library? How coupled are they with PyTorch as a whole? What's cool about working on domain libraries?

Further reading.

Line notes.

  • why do domain libraries exist? lots of domains specific gadgets,
    inappropriate for PyTorch
  • what does a domain library do
    • operator implementations (old days: pure python, not anymore)
      • with autograd support and cuda acceleration
      • esp encoding/decoding, e.g., for domain file formats
        • torchbind for custom objects
        • takes care of getting the dependencies for you
      • esp transformations, e.g., for data augmentation
    • models, esp pretrained weights
    • datasets
    • reference scripts
    • full wheel/conda packaging like pytorch
    • mobile compatibility
  • separate repos: external contributors with direct access
    • manual sync to fbcode; a lot easier to land code! less
      motion so lower risk
  • coupling with pytorch? CI typically runs on nightlies
    • pytorch itself tests against torchvision, canary against
      extensibility mechanisms
    • mostly not using internal tools (e.g., TensorIterator),
      too unstable (this would be good to fix)
  • closer to research side of pytorch; francesco also part of papers
  continue reading

83 afleveringen

Alle afleveringen

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding

Luister naar deze show terwijl je op verkenning gaat
Spelen