Artwork

Inhoud geleverd door Ulrik B. Carlsson and Ulrik Carlsson. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Ulrik B. Carlsson and Ulrik Carlsson of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

Matt and Ulrik make unsupervised product recommendation engines

51:28
 
Delen
 

Manage episode 248013317 series 2582622
Inhoud geleverd door Ulrik B. Carlsson and Ulrik Carlsson. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Ulrik B. Carlsson and Ulrik Carlsson of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
This episode is brought to you by by Maplytics by Inogic. Data Scientist Matt Lamb and Microsoft MVP Ulrik Carlsson discusses how you create product recommendation engines. A separate discipline in data science, combining content filtering and collaborative filtering, to do targeted product recommendations is not only more difficult, but possibly also one of the most lucrative. Episode also includes in discussions on: Combining advanced customer profiling with transactional data.

  • Matt talks to his new product PinPoint, a product recommendation engine for the Aftermarket
  • How Content Filtering and Collaborative Filtering combined can make for advanced product recommendations
  • Why Ulrik doesn't like continued recommendations from Amazon to buy smoke detectors when they perfectly well know he already has two (and how to tune your algorithm to avoid annoying your customer).
  • Possible data science urban legend on Target identifying teenage pregnancies before concerned parents of pregnant teen knows about it.
  • Will Matt this time give a concrete answer to the question on how many records are needed to get good results from these algorithms?

Links: PinPoint for Aftermarket

  continue reading

23 afleveringen

Artwork
iconDelen
 
Manage episode 248013317 series 2582622
Inhoud geleverd door Ulrik B. Carlsson and Ulrik Carlsson. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Ulrik B. Carlsson and Ulrik Carlsson of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
This episode is brought to you by by Maplytics by Inogic. Data Scientist Matt Lamb and Microsoft MVP Ulrik Carlsson discusses how you create product recommendation engines. A separate discipline in data science, combining content filtering and collaborative filtering, to do targeted product recommendations is not only more difficult, but possibly also one of the most lucrative. Episode also includes in discussions on: Combining advanced customer profiling with transactional data.

  • Matt talks to his new product PinPoint, a product recommendation engine for the Aftermarket
  • How Content Filtering and Collaborative Filtering combined can make for advanced product recommendations
  • Why Ulrik doesn't like continued recommendations from Amazon to buy smoke detectors when they perfectly well know he already has two (and how to tune your algorithm to avoid annoying your customer).
  • Possible data science urban legend on Target identifying teenage pregnancies before concerned parents of pregnant teen knows about it.
  • Will Matt this time give a concrete answer to the question on how many records are needed to get good results from these algorithms?

Links: PinPoint for Aftermarket

  continue reading

23 afleveringen

Minden epizód

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding