Artwork

Inhoud geleverd door O'Reilly Radar. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door O'Reilly Radar of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

Specialized Hardware for Deep Learning Will Unleash Innovation

41:23
 
Delen
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on June 24, 2021 00:15 (4y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 213043808 series 1427720
Inhoud geleverd door O'Reilly Radar. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door O'Reilly Radar of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
In this episode of the Data Show, I spoke with Andrew Feldman, founder and CEO of Cerebras Systems, a startup in the blossoming area of specialized hardware for machine learning. Since the release of AlexNet in 2012, we have seen an explosion in activity in machine learning, particularly in deep learning. A lot of the work to date happened primarily on general purpose hardware (CPU, GPU). But now that we’re six years into the resurgence in interest in machine learning and AI, these new workloads have attracted technologists and entrepreneurs who are building specialized hardware for both model training and inference, in the data center or on edge devices. In fact, companies with enough volume have already begun building specialized processors for machine learning. But you have to either use specific cloud computing platforms or work at specific companies to have access to such hardware. A new wave of startups (including Cerebras) will make specialized hardware affordable and broadly available. Over the next 12-24 months architects and engineers will need to revisit their infrastructure and decide between general purpose or specialized hardware, and cloud or on-premise gear. ARTIFICIAL INTELLIGENCE CONFERENCE The Artificial Intelligence Conference in San Francisco, September 4-7, 2018 Early price ends July 20. In light of the training duration and cost they face using current (general purpose) hardware, some experiments might be hard to justify. Upcoming specialized hardware will enable data scientists to try out ideas that they previously would have hesitated to pursue. This will surely lead to more research papers and interesting products as data scientists are able to run many more experiments (on even bigger models) and iterate faster. As founder of one of the most anticipated hardware startups in the deep learning space, I wanted get Feldman’s views on the challenges and opportunities faced by engineers and entrepreneurs building hardware for machine learning workloads.
  continue reading

443 afleveringen

Artwork
iconDelen
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on June 24, 2021 00:15 (4y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 213043808 series 1427720
Inhoud geleverd door O'Reilly Radar. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door O'Reilly Radar of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
In this episode of the Data Show, I spoke with Andrew Feldman, founder and CEO of Cerebras Systems, a startup in the blossoming area of specialized hardware for machine learning. Since the release of AlexNet in 2012, we have seen an explosion in activity in machine learning, particularly in deep learning. A lot of the work to date happened primarily on general purpose hardware (CPU, GPU). But now that we’re six years into the resurgence in interest in machine learning and AI, these new workloads have attracted technologists and entrepreneurs who are building specialized hardware for both model training and inference, in the data center or on edge devices. In fact, companies with enough volume have already begun building specialized processors for machine learning. But you have to either use specific cloud computing platforms or work at specific companies to have access to such hardware. A new wave of startups (including Cerebras) will make specialized hardware affordable and broadly available. Over the next 12-24 months architects and engineers will need to revisit their infrastructure and decide between general purpose or specialized hardware, and cloud or on-premise gear. ARTIFICIAL INTELLIGENCE CONFERENCE The Artificial Intelligence Conference in San Francisco, September 4-7, 2018 Early price ends July 20. In light of the training duration and cost they face using current (general purpose) hardware, some experiments might be hard to justify. Upcoming specialized hardware will enable data scientists to try out ideas that they previously would have hesitated to pursue. This will surely lead to more research papers and interesting products as data scientists are able to run many more experiments (on even bigger models) and iterate faster. As founder of one of the most anticipated hardware startups in the deep learning space, I wanted get Feldman’s views on the challenges and opportunities faced by engineers and entrepreneurs building hardware for machine learning workloads.
  continue reading

443 afleveringen

Alle afleveringen

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding

Luister naar deze show terwijl je op verkenning gaat
Spelen