Semi-Supervised, Unsupervised, and Adaptive Algorithms for Large-Scale Time Series
MP3•Thuis aflevering
Manage episode 178075636 series 1427720
Inhoud geleverd door O'Reilly Radar. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door O'Reilly Radar of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
In this episode of the O’Reilly Data Show, I spoke with Ira Cohen, co-founder and chief data scientist at Anodot (full disclosure: I’m an advisor to Anodot). Since my days in quantitative finance, I’ve had a longstanding interest in time-series analysis. Back then, I used statistical (and data mining) techniques on relatively small volumes of financial time series. Today’s applications and use cases involve data volumes and speeds that require a new set of tools for data management, collection, and simple analysis. On the analytics side, applications are also beginning to require online machine learning algorithms that are able to scale, are adaptive, and free of a rigid dependence on labeled data. I talked with Cohen about the challenges in building an advanced analytics system for intelligent applications at extremely large scale.
…
continue reading
443 afleveringen