Artwork

Inhoud geleverd door O'Reilly Radar. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door O'Reilly Radar of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

Managing Risk in Machine Learning Models

32:38
 
Delen
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on June 24, 2021 00:15 (4y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 209840169 series 1427720
Inhoud geleverd door O'Reilly Radar. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door O'Reilly Radar of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
In this episode of the Data Show, I spoke with Andrew Burt, chief privacy officer at Immuta, and Steven Touw, co-founder and CTO of Immuta. Burt recently co-authored an upcoming white paper on managing risk in machine learning models, and I wanted to sit down with them to discuss some of the proposals they put forward to organizations that are deploying machine learning. Some high-profile examples of models gone awry have raised awareness among companies for the need for better risk management tools and processes. There is now a growing interest in ethics among data scientists, specifically in tools for monitoring bias in machine learning models. In a previous post, I listed some of the key considerations organization should keep in mind as they move models to production, but the upcoming report co-authored by Burt goes far beyond and recommends lines of defense, including a description of key roles that are needed.
  continue reading

443 afleveringen

Artwork
iconDelen
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on June 24, 2021 00:15 (4y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 209840169 series 1427720
Inhoud geleverd door O'Reilly Radar. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door O'Reilly Radar of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
In this episode of the Data Show, I spoke with Andrew Burt, chief privacy officer at Immuta, and Steven Touw, co-founder and CTO of Immuta. Burt recently co-authored an upcoming white paper on managing risk in machine learning models, and I wanted to sit down with them to discuss some of the proposals they put forward to organizations that are deploying machine learning. Some high-profile examples of models gone awry have raised awareness among companies for the need for better risk management tools and processes. There is now a growing interest in ethics among data scientists, specifically in tools for monitoring bias in machine learning models. In a previous post, I listed some of the key considerations organization should keep in mind as they move models to production, but the upcoming report co-authored by Burt goes far beyond and recommends lines of defense, including a description of key roles that are needed.
  continue reading

443 afleveringen

Alle afleveringen

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding

Luister naar deze show terwijl je op verkenning gaat
Spelen