Artwork

Inhoud geleverd door Zeta Alpha. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geΓΌpload en geleverd door Zeta Alpha of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

ColBERT + ColBERTv2: late interaction at a reasonable inference cost

57:30
 
Delen
 

Manage episode 355037184 series 3446693
Inhoud geleverd door Zeta Alpha. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geΓΌpload en geleverd door Zeta Alpha of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

Andrew Yates (Assistant Professor at the University of Amsterdam) and Sergi Castella (Analyst at Zeta Alpha) discus the two influential papers introducing ColBERT (from 2020) and ColBERT v2 (from 2022), which mainly propose a fast late interaction operation to achieve a performance close to full cross-encoders but at a more manageable computational cost at inference; along with many other optimizations.

πŸ“„ ColBERT: "ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT" by Omar Khattab and Matei Zaharia. https://arxiv.org/abs/2004.12832

πŸ“„ ColBERTv2: "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction" by Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia. https://arxiv.org/abs/2112.01488

πŸ“„ PLAID: "An Efficient Engine for Late Interaction Retrieval" by Keshav Santhanam, Omar Khattab, Christopher Potts, and Matei Zaharia. https://arxiv.org/abs/2205.09707

πŸ“„ CEDR: "CEDR: Contextualized Embeddings for Document Ranking" by Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. https://arxiv.org/abs/1904.07094

πŸͺƒ Feedback form: https://scastella.typeform.com/to/rg7a5GfJ

Timestamps:

00:00 Introduction

00:42 Why ColBERT?

03:34 Retrieval paradigms recap

08:04 ColBERT query formulation and architecture

09:04 Using ColBERT as a reranker or as an end-to-end retriever

11:28 Space Footprint vs. MRR on MS MARCO

12:24 Methodology: datasets and negative sampling

14:37 Terminology for cross encoders, interaction-based models, etc.

16:12 Results (ColBERT v1) on MS MARCO

18:41 Ablations on model components

20:34 Max pooling vs. mean pooling

22:54 Why did ColBERT have a big impact?

26:31 ColBERTv2: knowledge distillation

29:34 ColBERTv2: indexing improvements

33:59 Effects of clustering compression in performance

35:19 Results (ColBERT v2): MS MARCO

38:54 Results (ColBERT v2): BEIR

41:27 Takeaway: strong specially in out-of-domain evaluation

43:59 Qualitatively how do ColBERT scores look like?

46:21 What's the most promising of all current neural IR paradigms

49:34 How come there's still so much interest in Dense retrieval?

51:09 Many to many similarity at different granularities

53:44 What would ColBERT v3 include?

56:39 PLAID: An Efficient Engine for Late Interaction Retrieval

Contact: castella@zeta-alpha.com

  continue reading

21 afleveringen

Artwork
iconDelen
 
Manage episode 355037184 series 3446693
Inhoud geleverd door Zeta Alpha. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geΓΌpload en geleverd door Zeta Alpha of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

Andrew Yates (Assistant Professor at the University of Amsterdam) and Sergi Castella (Analyst at Zeta Alpha) discus the two influential papers introducing ColBERT (from 2020) and ColBERT v2 (from 2022), which mainly propose a fast late interaction operation to achieve a performance close to full cross-encoders but at a more manageable computational cost at inference; along with many other optimizations.

πŸ“„ ColBERT: "ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT" by Omar Khattab and Matei Zaharia. https://arxiv.org/abs/2004.12832

πŸ“„ ColBERTv2: "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction" by Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia. https://arxiv.org/abs/2112.01488

πŸ“„ PLAID: "An Efficient Engine for Late Interaction Retrieval" by Keshav Santhanam, Omar Khattab, Christopher Potts, and Matei Zaharia. https://arxiv.org/abs/2205.09707

πŸ“„ CEDR: "CEDR: Contextualized Embeddings for Document Ranking" by Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. https://arxiv.org/abs/1904.07094

πŸͺƒ Feedback form: https://scastella.typeform.com/to/rg7a5GfJ

Timestamps:

00:00 Introduction

00:42 Why ColBERT?

03:34 Retrieval paradigms recap

08:04 ColBERT query formulation and architecture

09:04 Using ColBERT as a reranker or as an end-to-end retriever

11:28 Space Footprint vs. MRR on MS MARCO

12:24 Methodology: datasets and negative sampling

14:37 Terminology for cross encoders, interaction-based models, etc.

16:12 Results (ColBERT v1) on MS MARCO

18:41 Ablations on model components

20:34 Max pooling vs. mean pooling

22:54 Why did ColBERT have a big impact?

26:31 ColBERTv2: knowledge distillation

29:34 ColBERTv2: indexing improvements

33:59 Effects of clustering compression in performance

35:19 Results (ColBERT v2): MS MARCO

38:54 Results (ColBERT v2): BEIR

41:27 Takeaway: strong specially in out-of-domain evaluation

43:59 Qualitatively how do ColBERT scores look like?

46:21 What's the most promising of all current neural IR paradigms

49:34 How come there's still so much interest in Dense retrieval?

51:09 Many to many similarity at different granularities

53:44 What would ColBERT v3 include?

56:39 PLAID: An Efficient Engine for Late Interaction Retrieval

Contact: castella@zeta-alpha.com

  continue reading

21 afleveringen

Semua episode

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding

Luister naar deze show terwijl je op verkenning gaat
Spelen