Artwork

Inhoud geleverd door Demetrios. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Demetrios of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

Robustness, Detectability, and Data Privacy in AI // Vinu Sankar Sadasivan // #289

52:59
 
Delen
 

Manage episode 465441414 series 3241972
Inhoud geleverd door Demetrios. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Demetrios of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

Vinu Sankar Sadasivan is a CS PhD ... Currently, I am working as a full-time Student Researcher at Google DeepMind on jailbreaking multimodal AI models. Robustness, Detectability, and Data Privacy in AI // MLOps Podcast #289 with Vinu Sankar Sadasivan, Student Researcher at Google DeepMind. // Abstract Recent rapid advancements in Artificial Intelligence (AI) have made it widely applicable across various domains, from autonomous systems to multimodal content generation. However, these models remain susceptible to significant security and safety vulnerabilities. Such weaknesses can enable attackers to jailbreak systems, allowing them to perform harmful tasks or leak sensitive information. As AI becomes increasingly integrated into critical applications like autonomous robotics and healthcare, the importance of ensuring AI safety is growing. Understanding the vulnerabilities in today’s AI systems is crucial to addressing these concerns. // Bio Vinu Sankar Sadasivan is a final-year Computer Science PhD candidate at The University of Maryland, College Park, advised by Prof. Soheil Feizi. His research focuses on Security and Privacy in AI, with a particular emphasis on AI robustness, detectability, and user privacy. Currently, Vinu is a full-time Student Researcher at Google DeepMind, working on jailbreaking multimodal AI models. Previously, Vinu was a Research Scientist intern at Meta FAIR in Paris, where he worked on AI watermarking. Vinu is a recipient of the 2023 Kulkarni Fellowship and has earned several distinctions, including the prestigious Director’s Silver Medal. He completed a Bachelor’s degree in Computer Science & Engineering at IIT Gandhinagar in 2020. Prior to their PhD, Vinu gained research experience as a Junior Research Fellow in the Data Science Lab at IIT Gandhinagar and through internships at Caltech, Microsoft Research India, and IISc. // MLOps Swag/Merch https://shop.mlops.community/ // Related Links Website: https://vinusankars.github.io/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Richard on LinkedIn: https://www.linkedin.com/in/vinusankars/

  continue reading

415 afleveringen

Artwork
iconDelen
 
Manage episode 465441414 series 3241972
Inhoud geleverd door Demetrios. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Demetrios of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

Vinu Sankar Sadasivan is a CS PhD ... Currently, I am working as a full-time Student Researcher at Google DeepMind on jailbreaking multimodal AI models. Robustness, Detectability, and Data Privacy in AI // MLOps Podcast #289 with Vinu Sankar Sadasivan, Student Researcher at Google DeepMind. // Abstract Recent rapid advancements in Artificial Intelligence (AI) have made it widely applicable across various domains, from autonomous systems to multimodal content generation. However, these models remain susceptible to significant security and safety vulnerabilities. Such weaknesses can enable attackers to jailbreak systems, allowing them to perform harmful tasks or leak sensitive information. As AI becomes increasingly integrated into critical applications like autonomous robotics and healthcare, the importance of ensuring AI safety is growing. Understanding the vulnerabilities in today’s AI systems is crucial to addressing these concerns. // Bio Vinu Sankar Sadasivan is a final-year Computer Science PhD candidate at The University of Maryland, College Park, advised by Prof. Soheil Feizi. His research focuses on Security and Privacy in AI, with a particular emphasis on AI robustness, detectability, and user privacy. Currently, Vinu is a full-time Student Researcher at Google DeepMind, working on jailbreaking multimodal AI models. Previously, Vinu was a Research Scientist intern at Meta FAIR in Paris, where he worked on AI watermarking. Vinu is a recipient of the 2023 Kulkarni Fellowship and has earned several distinctions, including the prestigious Director’s Silver Medal. He completed a Bachelor’s degree in Computer Science & Engineering at IIT Gandhinagar in 2020. Prior to their PhD, Vinu gained research experience as a Junior Research Fellow in the Data Science Lab at IIT Gandhinagar and through internships at Caltech, Microsoft Research India, and IISc. // MLOps Swag/Merch https://shop.mlops.community/ // Related Links Website: https://vinusankars.github.io/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Richard on LinkedIn: https://www.linkedin.com/in/vinusankars/

  continue reading

415 afleveringen

Alle afleveringen

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding

Luister naar deze show terwijl je op verkenning gaat
Spelen