Show notes are at https://stevelitchfield.com/sshow/chat.html
…
continue reading
Inhoud geleverd door LessWrong. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door LessWrong of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !
Ga offline met de app Player FM !
“o1: A Technical Primer” by Jesse Hoogland
MP3•Thuis aflevering
Manage episode 454951409 series 3364760
Inhoud geleverd door LessWrong. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door LessWrong of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
TL;DR: In September 2024, OpenAI released o1, its first "reasoning model". This model exhibits remarkable test-time scaling laws, which complete a missing piece of the Bitter Lesson and open up a new axis for scaling compute. Following Rush and Ritter (2024) and Brown (2024a, 2024b), I explore four hypotheses for how o1 works and discuss some implications for future scaling and recursive self-improvement.
The Bitter Lesson(s)
The Bitter Lesson is that "general methods that leverage computation are ultimately the most effective, and by a large margin." After a decade of scaling pretraining, it's easy to forget this lesson is not just about learning; it's also about search.
OpenAI didn't forget. Their new "reasoning model" o1 has figured out how to scale search during inference time. This does not use explicit search algorithms. Instead, o1 is trained via RL to get better at implicit search via chain of thought [...]
---
Outline:
(00:40) The Bitter Lesson(s)
(01:56) What we know about o1
(02:09) What OpenAI has told us
(03:26) What OpenAI has showed us
(04:29) Proto-o1: Chain of Thought
(04:41) In-Context Learning
(05:14) Thinking Step-by-Step
(06:02) Majority Vote
(06:47) o1: Four Hypotheses
(08:57) 1. Filter: Guess + Check
(09:50) 2. Evaluation: Process Rewards
(11:29) 3. Guidance: Search / AlphaZero
(13:00) 4. Combination: Learning to Correct
(14:23) Post-o1: (Recursive) Self-Improvement
(16:43) Outlook
---
First published:
December 9th, 2024
Source:
https://www.lesswrong.com/posts/byNYzsfFmb2TpYFPW/o1-a-technical-primer
---
Narrated by TYPE III AUDIO.
---
…
continue reading
The Bitter Lesson(s)
The Bitter Lesson is that "general methods that leverage computation are ultimately the most effective, and by a large margin." After a decade of scaling pretraining, it's easy to forget this lesson is not just about learning; it's also about search.
OpenAI didn't forget. Their new "reasoning model" o1 has figured out how to scale search during inference time. This does not use explicit search algorithms. Instead, o1 is trained via RL to get better at implicit search via chain of thought [...]
---
Outline:
(00:40) The Bitter Lesson(s)
(01:56) What we know about o1
(02:09) What OpenAI has told us
(03:26) What OpenAI has showed us
(04:29) Proto-o1: Chain of Thought
(04:41) In-Context Learning
(05:14) Thinking Step-by-Step
(06:02) Majority Vote
(06:47) o1: Four Hypotheses
(08:57) 1. Filter: Guess + Check
(09:50) 2. Evaluation: Process Rewards
(11:29) 3. Guidance: Search / AlphaZero
(13:00) 4. Combination: Learning to Correct
(14:23) Post-o1: (Recursive) Self-Improvement
(16:43) Outlook
---
First published:
December 9th, 2024
Source:
https://www.lesswrong.com/posts/byNYzsfFmb2TpYFPW/o1-a-technical-primer
---
Narrated by TYPE III AUDIO.
---
Images from the article:
Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts, or another podcast app.
Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts, or another podcast app.
385 afleveringen
MP3•Thuis aflevering
Manage episode 454951409 series 3364760
Inhoud geleverd door LessWrong. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door LessWrong of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
TL;DR: In September 2024, OpenAI released o1, its first "reasoning model". This model exhibits remarkable test-time scaling laws, which complete a missing piece of the Bitter Lesson and open up a new axis for scaling compute. Following Rush and Ritter (2024) and Brown (2024a, 2024b), I explore four hypotheses for how o1 works and discuss some implications for future scaling and recursive self-improvement.
The Bitter Lesson(s)
The Bitter Lesson is that "general methods that leverage computation are ultimately the most effective, and by a large margin." After a decade of scaling pretraining, it's easy to forget this lesson is not just about learning; it's also about search.
OpenAI didn't forget. Their new "reasoning model" o1 has figured out how to scale search during inference time. This does not use explicit search algorithms. Instead, o1 is trained via RL to get better at implicit search via chain of thought [...]
---
Outline:
(00:40) The Bitter Lesson(s)
(01:56) What we know about o1
(02:09) What OpenAI has told us
(03:26) What OpenAI has showed us
(04:29) Proto-o1: Chain of Thought
(04:41) In-Context Learning
(05:14) Thinking Step-by-Step
(06:02) Majority Vote
(06:47) o1: Four Hypotheses
(08:57) 1. Filter: Guess + Check
(09:50) 2. Evaluation: Process Rewards
(11:29) 3. Guidance: Search / AlphaZero
(13:00) 4. Combination: Learning to Correct
(14:23) Post-o1: (Recursive) Self-Improvement
(16:43) Outlook
---
First published:
December 9th, 2024
Source:
https://www.lesswrong.com/posts/byNYzsfFmb2TpYFPW/o1-a-technical-primer
---
Narrated by TYPE III AUDIO.
---
…
continue reading
The Bitter Lesson(s)
The Bitter Lesson is that "general methods that leverage computation are ultimately the most effective, and by a large margin." After a decade of scaling pretraining, it's easy to forget this lesson is not just about learning; it's also about search.
OpenAI didn't forget. Their new "reasoning model" o1 has figured out how to scale search during inference time. This does not use explicit search algorithms. Instead, o1 is trained via RL to get better at implicit search via chain of thought [...]
---
Outline:
(00:40) The Bitter Lesson(s)
(01:56) What we know about o1
(02:09) What OpenAI has told us
(03:26) What OpenAI has showed us
(04:29) Proto-o1: Chain of Thought
(04:41) In-Context Learning
(05:14) Thinking Step-by-Step
(06:02) Majority Vote
(06:47) o1: Four Hypotheses
(08:57) 1. Filter: Guess + Check
(09:50) 2. Evaluation: Process Rewards
(11:29) 3. Guidance: Search / AlphaZero
(13:00) 4. Combination: Learning to Correct
(14:23) Post-o1: (Recursive) Self-Improvement
(16:43) Outlook
---
First published:
December 9th, 2024
Source:
https://www.lesswrong.com/posts/byNYzsfFmb2TpYFPW/o1-a-technical-primer
---
Narrated by TYPE III AUDIO.
---
Images from the article:
Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts, or another podcast app.
Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts, or another podcast app.
385 afleveringen
Alle afleveringen
×Welkom op Player FM!
Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.