Artwork

Inhoud geleverd door Roger Basler de Roca. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Roger Basler de Roca of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

Can you believe your AI? Detecting Hallucinations in Language Models

6:06
 
Delen
 

Manage episode 446444128 series 3153807
Inhoud geleverd door Roger Basler de Roca. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Roger Basler de Roca of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

In this episode, we delve into the intriguing challenge of "hallucinations" in large language models (LLMs)—responses that are grammatically correct but factually incorrect or nonsensical. Drawing from a groundbreaking paper, we explore the concept of epistemic uncertainty, which stems from a model's limited knowledge base.

Unlike previous approaches that often only measure the overall uncertainty of a response, the authors introduce a new metric that distinguishes between epistemic and aleatoric (random) uncertainties. This distinction is crucial for questions with multiple valid answers, where high overall uncertainty doesn't necessarily indicate a hallucination.

Experimentally, the authors demonstrate that their method outperforms existing approaches, especially in datasets that include both single-answer and multiple-answer questions. Their method is particularly effective in high-entropy questions, where the model is uncertain about the correct answer.

Join us as we unpack this promising approach to detecting hallucinations in LLMs, grounded in solid theoretical foundations and proven effective in practice.

This episode is based on the paper: Yasin Abbasi-Yadkori, Ilja Kuzborskij, András György, Csaba Szepesvári. "To Believe or Not to Believe Your LLM", ArXiv:2406.02543v1, 2024, it can be found here.

Disclaimer: This podcast is generated by Roger Basler de Roca (contact) by the use of AI. The voices are artificially generated and the discussion is based on public research data. I do not claim any ownership of the presented material as it is for education purpose only.

  continue reading

46 afleveringen

Artwork
iconDelen
 
Manage episode 446444128 series 3153807
Inhoud geleverd door Roger Basler de Roca. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Roger Basler de Roca of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

In this episode, we delve into the intriguing challenge of "hallucinations" in large language models (LLMs)—responses that are grammatically correct but factually incorrect or nonsensical. Drawing from a groundbreaking paper, we explore the concept of epistemic uncertainty, which stems from a model's limited knowledge base.

Unlike previous approaches that often only measure the overall uncertainty of a response, the authors introduce a new metric that distinguishes between epistemic and aleatoric (random) uncertainties. This distinction is crucial for questions with multiple valid answers, where high overall uncertainty doesn't necessarily indicate a hallucination.

Experimentally, the authors demonstrate that their method outperforms existing approaches, especially in datasets that include both single-answer and multiple-answer questions. Their method is particularly effective in high-entropy questions, where the model is uncertain about the correct answer.

Join us as we unpack this promising approach to detecting hallucinations in LLMs, grounded in solid theoretical foundations and proven effective in practice.

This episode is based on the paper: Yasin Abbasi-Yadkori, Ilja Kuzborskij, András György, Csaba Szepesvári. "To Believe or Not to Believe Your LLM", ArXiv:2406.02543v1, 2024, it can be found here.

Disclaimer: This podcast is generated by Roger Basler de Roca (contact) by the use of AI. The voices are artificially generated and the discussion is based on public research data. I do not claim any ownership of the presented material as it is for education purpose only.

  continue reading

46 afleveringen

Alle afleveringen

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding

Luister naar deze show terwijl je op verkenning gaat
Spelen