Artwork

Inhoud geleverd door BlueDot Impact. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door BlueDot Impact of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

Deep Double Descent

8:27
 
Delen
 

Gearchiveerde serie ("Inactieve feed" status)

When? This feed was archived on February 21, 2025 21:08 (5d ago). Last successful fetch was on January 02, 2025 12:05 (2M ago)

Why? Inactieve feed status. Onze servers konden geen geldige podcast feed ononderbroken ophalen.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 424087967 series 3498845
Inhoud geleverd door BlueDot Impact. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door BlueDot Impact of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

We show that the double descent phenomenon occurs in CNNs, ResNets, and transformers: performance first improves, then gets worse, and then improves again with increasing model size, data size, or training time. This effect is often avoided through careful regularization. While this behavior appears to be fairly universal, we don’t yet fully understand why it happens, and view further study of this phenomenon as an important research direction.

Source:

https://openai.com/research/deep-double-descent

Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Hoofdstukken

1. Deep Double Descent (00:00:00)

2. Model-wise double descent (00:02:28)

3. Sample-wise non-monotonicity (00:04:39)

4. Epoch-wise double descent (00:06:14)

85 afleveringen

Artwork
iconDelen
 

Gearchiveerde serie ("Inactieve feed" status)

When? This feed was archived on February 21, 2025 21:08 (5d ago). Last successful fetch was on January 02, 2025 12:05 (2M ago)

Why? Inactieve feed status. Onze servers konden geen geldige podcast feed ononderbroken ophalen.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 424087967 series 3498845
Inhoud geleverd door BlueDot Impact. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door BlueDot Impact of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

We show that the double descent phenomenon occurs in CNNs, ResNets, and transformers: performance first improves, then gets worse, and then improves again with increasing model size, data size, or training time. This effect is often avoided through careful regularization. While this behavior appears to be fairly universal, we don’t yet fully understand why it happens, and view further study of this phenomenon as an important research direction.

Source:

https://openai.com/research/deep-double-descent

Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Hoofdstukken

1. Deep Double Descent (00:00:00)

2. Model-wise double descent (00:02:28)

3. Sample-wise non-monotonicity (00:04:39)

4. Epoch-wise double descent (00:06:14)

85 afleveringen

Все серии

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding

Luister naar deze show terwijl je op verkenning gaat
Spelen